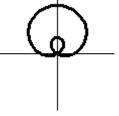
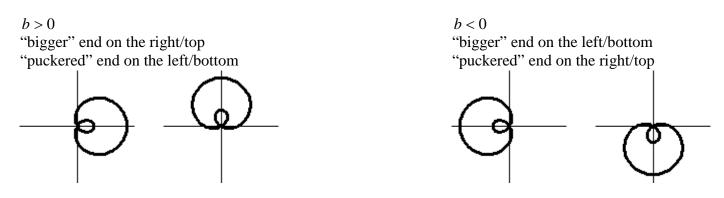
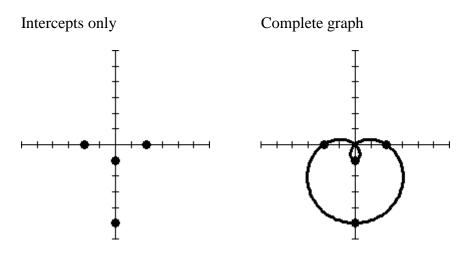

HOW TO GRAPH POLAR FUNCTIONS OF THE FORM $r = a \pm b \cos \theta$ **OR** $r = a \pm b \sin \theta$


1. Determine the shape of the graph by finding $\left|\frac{a}{b}\right|$.


2. Determine the axis of symmetry by the trigonometric function used.

3. Determine the "direction" of the graph by the sign of b.

4. Determine the x - and y - intercepts by finding the points corresponding to $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$


 $\theta = 0, \pi$ correspond to positive and negative x-intercepts (assuming r > 0) $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$ correspond to positive and negative y-intercepts (assuming r > 0)

If r < 0, the intercept is on the "other side" (negative vs positive, and vice versa) of the corresponding axis

Example: Graph $r = 2 - 3\sin\theta$

- 1. $\left|\frac{2}{-3}\right| < 1$ limaçon with loop
- 2. equation uses $\sin \theta$ symmetric over $\theta = \frac{\pi}{2} (y axis)$
- 3. -3 < 0 "bigger" end on the bottom, "puckered" end on the top
- 4.

θ	$r=2-3\sin\theta$
0	2 (positive x – intercept)
$\frac{\pi}{2}$	-1 (negative <i>y</i> – intercept)
π	2 (negative x – intercept)
$\frac{3\pi}{2}$	5 (negative <i>y</i> – intercept)

